报告题目:Some recent results on independence polynomials of graphs
报告人: 卫兵副教授 美国密西西比大学数学系
报告时间:2013年6月19日 (星期三) 16:00-17:00pm
报告地点:管理科研楼1218教室
摘要:
An independent set of a graph $G$ is a set of pairwise non-adjacent vertices. Let $/alpha(G)$ denote the cardinality of a maximum independent set and $f_s(G)$ for $0/le s/le /alpha(G)$ denote the number of independent sets of $s$ vertices. The independence polynomial $I(G; x) =/sum_{i=0}^{/alpha(G)}f_s(G)x^s$ defined first by Gutman and Harary has been the focus of considerable research recently. In this talk, we will first introduce some basic concepts and tools related to the independence polynomials of graphs, and then present some bounds for $f_s(G)$ when $G$ is a $k$-tree, a maximum $k$-degenerate graph or a compound graph. Additionally, we will characterize graphs which attain our bounds. Several further research problems will be proposed.
报告人简介:
卫兵美国密西西比大学数学系副教授。1992年获德国柏林工业大学博士学位。主要从事有关图的结构性理论,图的参数以及极图理论等方面的研究工作。在对图的圈,路和因子的结构,图的控制数,图的独立多项式等问题的研究中,获得一些深刻的结果。多次在国际或国内学术会议上作邀请报告。
主办单位: 365英国上市官网 中科院吴文俊数学重点实验室
欢迎感兴趣的师生参加!