报告题目: Fourier transformation on nilpotent Lie groups of step two and some applications in function theory
报告人:王伟教授
浙江大学
报告时间:2013年9月4日 星期三 下午15:30-16:30
报告地点:管理科研楼1518教室
报告摘要:
The tangential Cauchy-Fueter operator is the restriction to a hypersurface of the Cauchy-Fueter operator on the quaternionic space. For quadratic hypersurfaces in 2-d quaternionic space, we find the explicit form of tangential Cauchy-Fueter operators and associated tangential Laplacians, and use the group Fourier transformation on the corresponding nilpotent Lie groups of tep
two to construct the relative fundamental solutions. On the octonionic Heisenberg group, we can also define the octonionic
tangential operator, which annihilates tangential octonionic regular functions. We give the explicit form of associated tangential Laplacian, and the Szego kernel by using the group Fourier transformation on the octonionic Heisenberg group.
主办单位: 365英国上市官网
中科院吴文俊数学重点实验室
请感兴趣的师生参加!