题目:On the Cauchy Problem for the (modified) Two-component Euler-Poincare Equations
报告人: 向昭银 电子科技大学
时 间: 5月12日 星期一 下午4:00 -5:30
地 点: 管理科研楼1611会议室
摘 要: In this talk, we first use the classical energy methods to establish the local existence of unique classical solutions as well as two blow-up criteria for the Cauchy problem of the two-component Euler-Poincare equations. Then by using the particle trajectory and the Littlewood-Paley decomposition theory, we show that for a large of smooth initial data with some concentration property, the corresponding solutions will blow up in finite time. In the case of one component, we also obtain the precise blow-up rate estimates and global existence for the initial data with some non-positive property at the original. Next, we investigate the zero density limit and the zero dispersion limit. At the end of the talk, we also briefly demonstrate a Liouville type theorem for the stationary weak solutions. This is a joint work with Dr. Renjun Duan.
研究生教育创新计划GAP研讨班简介: 本系列研讨班旨在介绍一些当前极其活跃的数学研究课题和领域,扩充大家的视野, 在一定程度上填补研究生数学和研究数学之间的GAP. 报告者将尽可能地介绍该课题的背景, 概念, 已有结果及主要问题. 本系列报告的范围将涉及几何 (G), 代数, 分析 (A) 以及数学物理 (P)等各方面.
GAP研讨班主页: http://staff.ustc.edu.cn/~wangzuoq/GAP/gap.html
主办单位: 365英国上市官网