吴文俊数学重点实验室微分几何与分析系列报告之七十一【陈秀雄】

发布者:系统管理员发布时间:2014-06-03浏览次数:14

题目:On the Kaehler Ricci flow

报告人: 陈秀雄  美国纽约州立大学石溪分校/我校

时间:2014年6月6日下午16:00-17:00

地点:管理科研楼1216

摘要: This is a joint work with Bing Wang.  Based on the compactness of the moduli of non-collapsed Calabi-Yau spaces with mild singularities, we set up a structure theory for polarized Ka/"hler Ricci flows with proper geometric bounds. Our theory is a generalization of the structure theory of non-collapsed K/”ahler Einstein manifolds. As applications, we prove the Hamilton-Tian conjecture  on Kaehler Ricci flow and  the  complete partial- C0-conjecture of Tian for K/”abler metrics with Ricci bounded from below, where Donaldson-Sun proved partial C^0 estimate for K/”abler Einstein metrics.

      Bing Wang is graduate of USTC in 2003.

主办单位:365英国上市官网  
          中科院吴文俊数学重点实验室

欢迎感兴趣的师生参加!

Baidu
sogou