吴文俊数学重点实验室组合图论系列讲座之五十八【Humberto Naves】

发布者:系统管理员发布时间:2015-07-29浏览次数:7

报告题目:The threshold probability for long cycles

报告人:Humberto Naves, Institute for Mathematics and its Applications, USA

报告时间:8月14日15:15-16:15

报告地点:1208

摘要:For a given graph $G$ of minimum degree at least $k$, let $G_p$ denote the random spanning subgraph of $G$ obtained by retaining each edge independently with probability $p=p(k)$. In this talk, we prove that if $p /ge /frac{/log k + /log /log k + /omega_k(1)}{k}$, where $/omega_k(1)$ is any function tending to infinity with $k$, then $G_p$ asymptotically almost surely contains a cycle of length at least $k+1$. When $G$ is the complete  graph on $k+1$ vertices, our theorem coincides with the classic result on the threshold probability for the existence of a Hamilton cycle in the binomial random graph.

 

 

欢迎感兴趣的师生前来参加!

Baidu
sogou