01-02【熊 革】腾讯会议 几何分析系列报告

发布者:卢珊珊发布时间:2021-12-29浏览次数:74

题目:L_p John ellipsoids for negative indices


报告人:熊 革 教授(同济大学365英国上市官网)


摘要:It is known that there exists a unique ellipsoid of maximal volume inside a convex body (a compact convex set with non-empty interiors) in image . This ellipsoid is called John ellipsoid (named after mathematician Fritz John), and has many applications in convex geometry, functional analysis, and optimizations. In 2005, E.Lutwak, D.Yang and G.Zhang [Proc. London Math. Soc. 90 (2005), 497–520] defined the John ellipsoids for and established their associated affine isoperimetric inequalities within the Brunn-Minkowski theory.


In this talk, I will introduce our very recent work on John ellipsoids for This talk is based on the joint work with Xinbao Lu. 


时间:2022年1月2日14:00-17:00


腾讯会议:928-158-930


报告人介绍:

      熊革,同济大学教授、博士生导师。主要研究凸体几何。他解决了凸体几何中的几个公开问题,包括锥体积泛函仿射极值的Lutwak-Yang-Zhang公开问题的23维情形;由截面确定凸体的Baker-Larman公开问题的2维情形;完全解决了G. Zhang关于凸体的John 椭球与对偶惯性椭球的一致性问题。他最早研究并解决了Lp 静电容量的Minkowski 问题;提出并证明了“Lp transference principle”,对Lp Brunn-Minkowski型不等式进行了统一处理。

他在国际纯数学重要期刊如JDG, AIM, JFA, CVPDE, IUMJ, IMRN, CAG, Israel Journal of Mathematics, Discrete and Computational Geometry, Bulletin of LMS等发表论文近30篇。他的多个研究成果被写入凸体几何的经典教材《Geometric Tomography》和《Convex Bodies: the Brunn-Minkowski theory》中。


Baidu
sogou