报告题目:On stability and regularization for data-driven solution of parabolic inverse source problems
报告人:刘继军 东南大学
报告时间:12月13日14:00-15:00
地点:https://meeting.tencent.com/dm/6sNuHdhqidHk 腾讯会议:918-7000-7748
摘要:
The diffusion process from some internal source arising in engineering situations can be mathematically described by a parabolic system. We consider an inverse source problem for parabolic system using parametric approximations, where deep neural networks (DNNs) are used to approximate the solution of the inverse problem. First, we establish generalization error estimates depending on training errors and data noise levels by establishing conditional stability of the inverse problem. Then we propose a new loss function, where the extra fit terms adding higher regularity can be understood as the regularizing penalty specified to the solution of inverse problems. Finaly we develop reconstruction schemes and demonstrate the effectiveness of our proposed scheme.
This is a joint work with Dr. M.M.Zhang and Prof. Q.X.Li.
报告人简介:
东南大学二级教授,博士生导师,享受国务院政府特殊津贴专家。现任南京应用数学中心常务副主任,全国大学生数学建模竞赛组委会委员,中国工业与应用数学学会数学建模竞赛专业委员会委员,江苏省计算数学学会副理事长。国家精品资源共享课《数学建模与数学实验》主持人。历任中国工业与应用数学学会常务理事,中国计算数学学会常务理事,江苏省工业与应用数学学会第五届、第六届理事会理事长。
长期从事数学物理反问题、大规模科学计算和介质成像的数学理论和方法的研究。主持完成国家自然科学基金重大研究计划培育项目、面上项目等项目。已在SIAM J. Appl. Math等刊物发表学术论文100余篇,在科学出版社出版学术专著2本。曾受中国NSFC、德国DAAD、韩国21Brain Project等资助赴国外开展合作研究。2012-2017年任Inverse Problems in Sciences and Engineering编委,2018年起任J. Inverse and Ill-posed Problems编委。
作为主持人获江苏省教学成果一等奖、江苏省自然科学三等奖、教育部自然科学二等奖。