07-04【王智宇】管理楼1318 吴文俊数学重点实验室组合图论系列报告

发布者:卢珊珊发布时间:2023-07-03浏览次数:10


报告题目: Anti-Ramsey number of edge-disjoint rainbow spanning trees


报告人:王智宇, 路易斯安那州立大学


地点:管理科研楼1318


时间:7月4号下午4:00-5:00


摘要:

An edge-colored graph $H$ is called \textit{rainbow} if every edge of $H$ receives a different color. Given any host multigraph $G$, the \textit{anti-Ramsey} number of $t$ edge-disjoint rainbow spanning trees in $G$, denoted by $r(G,t)$, is defined as the maximum number of colors in an edge-coloring of $G$ containing no $t$ edge-disjoint rainbow spanning trees. For any vertex partition $P$, let $E(P,G)$ be the set of non-crossing edges in $G$ with respect to $P$. We determine $r(G,t)$ for all host multigraphs $G$: $r(G,t)=|E(G)|$ if there exists a partition $P_0$ with $|E(G)|-|E(P_0,G)|<t(|P_0|-1)$; and $r(G,t)=\max_{P\colon |P|\geq 3} \{|E(P,G)|+t(|P|-2)\}$ otherwise.

 


Baidu
sogou